DSL and ATM[edit]
DSL modems typically provide Ethernet connections to local equipment, but inside they may actually be Asynchronous Transfer Mode (ATM) modems.[b] They use ATM Adaptation Layer 5 (AAL5) to segment each Ethernet packet into a series of 53-byte ATM cells for transmission, reassembling them back into Ethernet frames at the receiving end.
Using a separate virtual circuit identifier (VCI) for audio over IP has the potential to reduce latency on shared connections. ATM's potential for latency reduction is greatest on slow links because worst-case latency decreases with increasing link speed. A full-size (1500 byte) Ethernet frame takes 94 ms to transmit at 128 kbit/s but only 8 ms at 1.5 Mbit/s. If this is the bottleneck link, this latency is probably small enough to ensure good VoIP performance without MTU reductions or multiple ATM VCs. The latest generations of DSL, VDSL and VDSL2, carry Ethernet without intermediate ATM/AAL5 layers, and they generally support IEEE 802.1p priority tagging so that VoIP can be queued ahead of less time-critical traffic.[19]
ATM has substantial header overhead: 5/53 = 9.4%, roughly twice the total header overhead of a 1500 byte Ethernet frame. This "ATM tax" is incurred by every DSL user whether or not they take advantage of multiple virtual circuits – and few can.[19]
Layer 2[edit]
Several protocols are used in the data link layer and physical layer for quality-of-service mechanisms that help VoIP applications work well even in the presence of network congestion. Some examples include:
- IEEE 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality-of-service enhancements for wireless LAN applications through modifications to the Media Access Control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as voice over wireless IP.
- IEEE 802.1p defines 8 different classes of service (including one dedicated to voice) for traffic on layer-2 wired Ethernet.
- The ITU-T G.hn standard, which provides a way to create a high-speed (up to 1 gigabit per second) Local area network (LAN) using existing home wiring (power lines, phone lines and coaxial cables). G.hn provides QoS by means of Contention-Free Transmission Opportunities (CFTXOPs) which are allocated to flows (such as a VoIP call) that require QoS and which have negotiated a contract with the network controllers.
Performance metrics[edit]
The quality of voice transmission is characterized by several metrics that may be monitored by network elements and by the user agent hardware or software. Such metrics include network packet loss, packet jitter, packet latency (delay), post-dial delay, and echo. The metrics are determined by VoIP performance testing and monitoring.[23][24][25][26][27][28]
You received this message because you are subscribed to the Google Groups "1top-oldtattoo-2" group.
To unsubscribe from this group and stop receiving emails from it, send an email to 1top-oldtattoo-2+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/1top-oldtattoo-2/CAHT588_dSaWPm4HLcJ8Djr7%3Dputid_Vfv55HzY9wHPct59-0sg%40mail.gmail.com.
No comments:
Post a Comment